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LETTER TO THE EDITOR 

Length scaling in MFRG 

Per Arne Slotte 
Institutt for teoretisk fysikk, Universitetet i Trondheim, 7034 Trondheim-NTH, Norway 

Received 21 October 1986 

Abstract. The mean-field renormalisation group (MFRG) has so far given poor estimates 
for critical indices. It is argued that this can be traced to an unsatisfactory definition of 
the length scaling factor. A new definition, that improves the estimates in most cases, is 
proposed. 

The mean-field renormalisation group (MFRG) of Indekeu et a1 (1982) has proven to 
be a powerful method for determination of phase diagrams and critical properties of 
spin systems. This includes both classical (Indekeu et a1 1982, Slotte 1984, de Alcantara 
Bonfim 1984, de Alcantara Bonfim and S i  Barreto 1985, Plascak and S 6  Barreto 1986) 
and quantum (Indekeu er a1 1982, Plascak 1984a, b) systems. The spirit of the method 
is to compare the magnetisation (order parameter) of two clusters of different sizes. 
The clusters are subjected to a symmetry breaking field (a mean field) at the edges. 
Finite-size scaling (Fisher 1971, Suzuki 1977, Barber 1983) is assumed both for the 
magnetisation, m, and for the mean field, p. If the expansion of the magnetisations 
to first order in the mean field is 

(the subscript represents the cluster size and K is the spin coupling), application of 
finite-size scaling gives the critical condition 

A N ' (  K c )  = A N  ( K c )  (2) 
where K ,  is the critical coupling. The thermal eigenvalue is 

and the corresponding critical exponent is 

y, = ln AT/ln 1 (4) 
where 1 is the length scaling factor determined by N and N ' .  

Finite clusters were used in the above-mentioned applications, and recently Plascak 
and Silva (1986) have extended the method to semi-infinite clusters (i.e. strips). 

MFRG gives very good estimates for the critical couplings (the phase diagram) even 
when the smallest clusters (one- and two-spin clusters) are used. The estimates for 
the critical indices are, on the other hand, very poor, improving only slightly with 
increasing cluster size. This is also the case when semi-infinite clusters are used. In 
this letter I argue that one reason for this is the definition of the length scaling factor 
I in (4) and that the estimates may be improved by a more judicious choice of 1. 
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There is clearly some arbitrariness in defining the scaling factor for small clusters. 
Finite-size scaling is derived for large clusters where a change in the definition of the 
cluster length changing the cluster length by an amount of the order of one lattice 
spacing is of no consequence. For small clusters such a change is very important, 
however. On the other hand, the success of phenomenological scaling (Nightingale 
1976, Burkhardt and van Leeuwen 1982) shows that a meaningful definition is possible 
at least in that case, i.e. for lattice strips. 

The definition of the length scaling factor traditionally used in MFRC calculations 
is 

I = ( N /  N ’ ) ’ ’ ~  ( 5 )  

where d is the dimensionality, and N and N ‘  are the number of spins in the two 
clusters. Or, stating it in another way, the mean length of a N-spin cluster is taken 
to be 

(6) L = 

This definition is consistent with the formal connection between a lowest-order 
cumulant expansion and the MFRC for the isotropic scaling from a hypercube with 
N = 2d spins to a single spin (Indekeu et a1 1982). Two objections to the definition 
(6) can, however, be raised. The first is that, since the cluster is surrounded by a mean 
field, it simulates a larger cluster than that defined by (6). The second is that, for 
anisotropic scaling, (6) is inconsistent with the standard procedure in finite-size scaling. 

In (6) the length of the cluster is measured in terms of the number of spins. I 
suggest that it should rather be measured by the number of interactions, including the 
interactions with the surrounding mean field. A single-spin cluster will thus have a 
length L = 2. For clusters with different lengths in different directions, such as the 
two-spin cluster and infinite strips, the form proposed by finite-size scaling is 

where the sum runs over the Cartesian directions. The form (7) arises naturally from 
the fact that 1/L represents a cutoff in k space (Suzuki 1977) and ( l / L , )  must be 
treated as vectors. Using (7)  the length of a two-spin cluster in a hypercubic lattice 
will be 

L = 6[ d / (9d  - ,)I”’. (8) 

Strictly speaking, the finite-size scaling functions are expected, in addition to the length 
dependence given by (7), to be shape dependent (Ferdinand and Fisher 1969, Barber 
1983), so that the MFRG using anisotropic scaling is less well-founded theoretically 
than the MFRC with isotropic scaling. 

A further justification of the scaling factors defined above is obtained by considering 
the q-state Potts model on a high-dimensional hypercubic lattice. For this model 
Indekeu et a1 (1982) have shown that the MFRG, using one- and two-spin clusters, 
gives the critical temperature correctly to second order in l / d  when q = 2: 

1 1  
(9) 
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Table 1. New estimates for the thermal index, y,. 

Y7 

Model Type of scaling N N'  Old estimate New estimate 

d = 2  
square-lattice Ising 
ferromagnet 

d = 3  
cubic-lattice Ising 
ferromagnet 

d = 2  
triangular-lattice Ising 
antiferromagnet 

Isotropic 4 
9 

16 
25 

Anisotropic 2 
Infinite strips 2 

3 
Exact 

Isotropic 8 
27 

Infinite strips 2 
3 

Series 

Isotropic 6 
15 
Exact 

3 
6 

0.69 
0.78 
0.82 
0.84 
0.60 
0.66 
0.74 

0.82 
0.95 

0.7 
0.86 

1.18 a 
1.10 
1.06 
1.03 
1.28 a 
1.12 b 
1.04 

1 .oo 
1.40 a 
1.35 
1.46 b 
1.60 

1.587 C 

0.8 d 
1 .o 

1.2 

a Indekeu er a/ (1982). 
Plascak and Silva (1986) and this work. 
Le Gillou and Zinn-Justin (1980). 
Slotte (1984). 

Using their equation (10) a straightforward calculation of the thermal eigenvalue gives 
for all q 

If one uses the conventional scaling factor (5) the thermal index takes the value 
yT = 1/2 In 2 = 0.72, significantly different from the correct (mean-field) value ,Fact = 2 .  
Using the new definition (7)  ((8)) one gets the improved estimate 

y --+o(+). 9 
T - 5  

This is still not exact, but quite good, bearing in mind that the scaling is extremely 
anisotropic. 

Table 1 shows new MFRG estimates, using (7) ,  for indices calculated previously by 
various authors. In most cases, including some calculations on other models not 
included in the table (Plascak 1984a, de Alcantara Bonfim 1984, Plascak and S i  Barreto 
1986), the estimates are in general considerably improved. 
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